
Orthogonal polynomials in neutron transport theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 327

(http://iopscience.iop.org/0305-4470/15/1/041)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 327-330. Printed in Great Britain 

ADDENDUM 

Orthogonal polynomials in neutron transport theory 

Jes6s S Dehesa 
Departamento de Fisica Nuclear, Facultad de Ciencias, Universidad de Granada, Granada, 
Spain 

Received 19 June 1981 

Abstract. The asymptotic average properties of zeros of the polynomials g r ( x ) ,  which play 
a fundamental role in neutron transport and radiative transfer theories, are investigated 
analytically in terms of the angular expansion coefficients +?k of the scattering kernel for 
three wide classes of scattering models. In particular it is found that the scattering models of 
Eccleston-McCormick, Shultis er al and Henyey-Greenstein belong in one of the above- 
mentioned classes, and their associated polynomials gT(x) have the same asymptotic 
density of zeros. 

In the transport theory of neutrons through an isotropic or anisotropic scattering 
medium, a special set of orthogonal polynomials g? ( x )  plays a fundamental role for the 
solution of direct and inverse problems (see e.g. Davison 1957, McCormick and Kuscer 
1966,1973, McCormick and Veeder 1978 and references therein). These polynomials 
were introduced long ago (Chandrasekhar 1950) for the m = 0 and azimuth-indepen- 
dent case and defined later (Mullikin 1964, McCormick and Kuscer 1966, 1973, 
McCormick and Veeder 1978) for the general case m # 0 and azimuthal dependence. 
The orthogonality properties of these polynomials and other of their important 
properties which are of particular interest in neutron transport theory have been 
analysed in detail (Inonu 1970, Veeder 1977). 

The zeros of the polynomials g form an approximate representation for transport 
theory of the spectrum of discrete eigenvalues and the continuum from - 1 s x s + 1. In 
the method of spherical harmonics for solving transport problems, the zeros of 
gL+l(x) = 0 are the eigenvalues for the PL method. Several other properties of these 
zeros (Inonu 1970), and their connections with the exact eigenvalue spectra reproduced 
with a method such as the singular eigenfunction expansion technique (McCormick and 
Kuscer 1973), are known. 

Recently (Dehesa 1981) the asymptotic distribution of the zeros p ( x )  of the 
polynomials g?(x )  has been examined in terms of the angular expansion coefficients $k 
of the scattering kernel. As is well known, these parameters Gk describe the anisotropy 
of scattering of the medium. Here the general results relative to the distribution density 
p ( x )  are applied to different scattering models, each of which is characterised by its 
corresponding set of parameters $k. 

The polynomials g?(x) are uniquely defined by the recursion relation 
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or (Dehesa 1981) 

with the initial conditions 
I ? - 1  

m g:(x) = (2n + 1 )  = ( 2 m  - I ) ! ! ,  gm-1 (x) = 0. 
n = o  

Here m can be any non-negative integer and hk is given by 

( l a )  

( 1 6 )  

hk = 2 k  + 1 - @ k  where @ k  = ( 2 k  1 ) C f k ,  12) 

c and f k  being real parameters which physically represent the mean number of 
secondary particles per collision and the expansion coefficients of the scattering (or 
phase) function respectively. The polynomials g?(x) defined by equations ( l a ,  b )  are of 
order k - m, alternately even or odd. They are a generalisation of a modified version of 
the associated Legendre polynomials, and reduce to these in the limit of @k -+ 0 for all k ,  
i.e. when the medium becomes purely absorbing. 

The main result of this note is the following theorem. 

Theorem 1. Let us consider the three wide classes of scattering models defined by the 
following three sets of parameters qk : 

(A) @k = o ( k ) ,  

(B) @ k - k  i.e. @ k  = a k  + 0(1), a being a real parameter, 

(c) @ k - k l + E ,  E >o,  
as k -+ CO. The moments of even order { p i I ;  j = 0 ,  1 , 2 ,  . . .} of the asymptotic density of 
zeros p ( x )  of the polynomials gkm(x) associated with each of these three scattering 
classes are given by 

(3)  (A) pkj = (2 j  - l ) ! ! / j ! 2 ’ ,  

(B) p $ j = ( 2 j -  1 ) ! ! 2 ’ / j ! ( 2 + ~ ~ ) ~ ’ ,  (4) 

(C) p ; j = o .  ( 5 )  

The moments of odd order {p;i+l ; j = 0, 1 , 2 ,  . . .} are all equal to zero for the three 
classes of scattering. 

Here we have used the symbols ‘0’ and ‘-’ with the conventional interpretation, e.g. 
@k = o ( k )  means that @k grows more slowly than k as k + 00, and @& - kliE means that 
@k and kl+‘ grow at the same rate as k -+ 00. Also the double factorial notation is used 
in thefollowingsense: ( 2 j - l ) ! ! = 1 X 3 x 5 .  . . ( 2 j - l ) = ~  --1/2 i 2 r(j+$). 
The proof of theorem 1 is based on the following result (Dehesa 1981). If the 
non-negativity condition 

k - w  hk-i L 



Orthogonal polynomials in neutron transport theory 329 

is fulfilled, then the moments of the asymptotic density of zeros p ( x )  of the polynomials 
g r ( x )  are: 

Now, taking into account that 

and, according to (2) and (6), that 

Gk = ~ ( k )  3 h k  = 2k + 0 ( 1 ) +  b = 1, 

i itk = a k  +O( l )+  hk = (2+ m)k +0(1 )+b  =2 / (2+a) ,  

@k - kl+E,  E >O+hk - k'+'+b =O, 

one has only to put these values of b into the equation (7) to obtain the expressions (3), 
(4) and (5) which we were looking for. 

In practice many precise neutron scattering models have been considered which 
belong in the three wide classes studied in theorem 1. Here we will take into account, 
for the sake of illustration, three scattering models frequently used in the literature 
(Eccleston and McCormick 1970, McCormick and Sanchez 1981). The binomial model 
(Kaper et a1 1970, Shultis and Hill 1976) with predominantly forward (+) or backward 
(-) scattering is characterised by a set of coefficients Gk(af )  given recurrently by 

(2k + 1)(a + 1 - k )  
(2k - l ) ( m  + 1 + k )  @,(a*) = * Gk-l(@ *), k s - 1 ,  

once wo is specified. A second scattering model (Henyey and Greenstein 1941) has the 
following expansion coefficients: 

Gk(l)=(2k+l)lkGo, -1 <1c 1. 

A third scattering model used for one-speed neutron transport (Eccleston and 
McCormick 1970) is defined by the coefficients 

@ 2 k + l =  2GO&,O, k 2 0 .  

For all these three particular scattering models one easily notices that Gk grows 
more slowly than k as k + a~ and therefore each of the models is a member of the class 
A. As a consequence of this, it arises in a natural way that, according to our theorem, 
the different systems of orthogonal polynomials g? (x) associated with the scattering 
models just mentioned have the same asymptotic density of zeros. 

There are many other scattering models which might belong in classes A, B or C, 
such as the scattering of visible light in fog (Spencer 1960, Pahor and Gross 1970, 
McCormick and Sanchez 1981) and the scattering in the speed-independent neutron 
transport of Murray, Siewert and Harrington (Murray et al 1967). 
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